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Abstract—The increase in multimedia content makes providing <( )>
good quality of service in wireless networks a challenging
problem. Consider a set of users, with different content interes,
connected to the same base station. The base station can only

1 2 K

broadcast a limited amount of content, but wishes to satisfy k time slots BS o
the largest number of users. We approach this problem by ' // 8 \\
considering each user as a point in a 2-D space, and each . k . 7

type of broadcast content as a circle. A point that is covered AN : 20 7TA° 8 )
b . . . e . . / 6 \ / \ /
y a circle will be satisfied, and the closer the point is to the | 8 / d(.%/ﬁ P
center of the circle, the higher the satisfaction. In this paper, we \ 8 e ) \ " \\,~ -
first formulate this problem as an optimal content distribution N 8// 8 8 7
problem and show that it is NP-hard. The optimal problem ~Z— N_=27

can also be extended into ann-dimensional (n-D) space, and
distance measurements can be expressed in a genepahorm. We  Fig. 1. Content distribution in a sequencekobroadcast in then-D space.
then introduce three local greedy algorithms and compare their
complexity. The approximation ratio of our greedy algorithms to

the optimization problem is also formally analyzed in this paper. icul s . . . .
We perform extensive simulations using various conditions to Particular user’s interest. Two dimensions is considecedet

evaluate our greedy algorithms. The results demonstrate that two attributes of an interest. Radius determines the baynda
our solutions perform well and reflect our analytical results. of closeness between the content and matching interest. The
Index Terms—Approximation ratio, content distribution, local  reward denotes happiness, but with a given bound.
greedy algorithm, maximum coverage, optimization. In the real world, people (users here) have their own
interests. If the broadcast contents meet their interesess
will be happy and gain some rewards. For example, one user
The growth in the amount of mobile devices, such ds interested in classic music. If the BS broadcasts lighsimu
smartphones and tablets, coupled with the popularity of muhis user will be happy to hear this content. Otherwise, ékro
timedia content, places a significant strain on existingewirmusic is broadcast, the user will not gain any rewards. The
less networks. The field of content distribution for wirelestotal rewards that each user can gain is capped. The interest
networks [1], [2], [3], [4] has emerged in an attempt talistance is the difference between the broadcasting ctnten
address this problem. In this paper, we propose to formulaed the users interests, which can be used to measure the
the content distribution problem as an optimization problegained rewards. Our objective is to maximize the total relwar
which considers the interest distance between the conteht gained by all of the users. We use multi-dimensional vectors
the user’s interest. (m keywords inm-D space) to represent the contents and the
Fig. 1 illustrates our problem setting. We assume the basgers’ interests.
station (BS) can only broadcakttimes in a given period of In this paper, we first formulate our objective into an
time ton number of users. The BS is limited tobroadcasts optimization problem and prove its NP-hardness. Then we
for performance reasons, wheke < n. Each user will be propose three local greedy algorithms to solve the problem.
happy if the information that was broadcast is close to hihese algorithms can be implemented in theD space. The
interest. We seek to answer the question of choosing timerest distance can be calculated in a gengmabrm. Here,
content to broadcast to make the most number of users happg. only consider the 1-norm and 2-norm (physical distance
This problem can be abstracted as follows. Suppose thérethe 2-D space) models. We also design weighted and
aren points in a 2-dimensional (2-D) space to be covered byunweighted schemes to better reflect the relative impoetanc
circles of radiug'. Each pointz; has a maximum reward af;, of each node in the network. An analysis of the approximation
and a point will return a reward if it is covered by a circleeThratio of the greedy algorithms is also given. Trace-driven
amount of reward is determined by its distance to the cengvraluations show the good performance of our local greedy
of the circle. Our objective is get the maximum reward for allgorithms.
of the points. In this abstraction, each point corresponds t The major contributions of our work are as follows:

I. INTRODUCTION



« We introduce the reward function to measure the qualip. Smallest circle problem
of content distribution in a content distribution network. |n our greedy algorithms, we will use smallest circle so-

« We prove the optimization problem is an NP-hard proQgtion to find the smallest circle to cover the points in the

lem. . 2-D space. The smallest circle problem was initially pregabs
« We develop three local greedy algorithms to solve thg, the English mathematician Sylvester in 1857 [16]. The
problem and calculate the approximation ratio. smallest circle problem in the plane is an example of a tacili

« We evaluate the algorithms in synthetic traces. The SiMigcation problem, in which the location of a new facility
lation results show the good performance of the proposgg;st be chosen to provide service to a number of customers,
greedy algorithms. minimizing the farthest distance that any customer musetra

The rest of the paper is organized as follows. Section 0 reach the new facility [17]. As Megiddo [18] showed, the

discusses relevant previous work. Section Ill presents th@nimum enclosing circle can be found in linear time, and the
preliminary work, where the problem definition is given angame linear time bound also applies to the smallest englosin
p-norm as interest distance is reviewed. Section IV explaisghere in Euclidean spaces of any constant dimension. Welzl
the objective function in a formal model and provides thEL9] proposed a simple randomized algorithm for the minimum
proof of its NP-hardness. Section V describes our designeavering circle problem that runs in expectedn) time, based
local greedy algorithms with the approximation ratio. 8ect on a linear programming algorithm of Seidel [20].

VI analyzes the experiment results. Section VIl concludhes t

. Lo T [1l. PRELIMINARY
paper. The detailed proof of the approximation ratio is give

in the appendix of the paper. A. Problem definition
Suppose there ane points in a 2-D space to be covered by
Il. RELATED WORK k circles of radius . Each point; has a maximum reward of
w;. A point will return a reward if it is covered by a circle.
A. Content distribution The reward can be thought of as the satisfaction of the nodes

o ... by receiving the content. The amount of reward is based on
Content distribution for peer-to-peer (P2P) applicatiofs yhe gistance between the point and the center of the circle. A
an important research problem [5], [6], [7], [8]. Contenfint; can return multiple rewards, but not exceeding if
distribution protocols allow personal computers to fuBiti i js covered by multiple circles. Note that a larger valuetof

in a c_:oordinated manner as a dlis_tribut-e(.j Storage medi.um Bhds to have a higher average of satisfiability, but it wiba
contributing, searching and obtaining digital contentefhis 1,5y Jess frequent service in a time-slotted content Histtn
a rich amount of literature on the design and performanck an

ysis of content distribution algorithms in wireless netlsof1], Q/stem.
[2], [3], [4], [9], [10], [11], [12]. These protocols mainlgely B. P-norm
on flooding, not only to maintain the topology informationthb  The interest distance between content and an interest can
also to distribute the content availability. Our approadfets e calculated in a generpnorm. In linear algebra, functional
from these works because we introduce the interest distanggalysis and related areas of mathematics, a norm is a émncti
and formulate the problem to a maximum reward problem. that assigns a strictly positive length or size to all of teetors

in a vector space, other than the zero vector [21].
B. Maximum coverage

m 1/p
Our maximum reward content distribution problem is simi- ||, = (Z xﬁ) :
lar to the maximum coverage problem in [13]. This is a classic i=1

question in computer science and computational complexity|n this paper, we will just focus on thé-norm and the
theory. The maximum coverage problem is NP-hard, and hasiorm conditions. 1-norm is also called Taxicab norm or
been widely studied in approximation algorithms. Recent r@lanhattan norm. The name relates to the distance a taxi has
search on this topic has proposed budgeted maximum covergg@rive in a rectangular street grid to get from the origin to
[14] and generalized maximum coverage [15]. The budgetgfe pointz: |z, = 37, |#]. 2-norm is called Euclidean
maximum coverage problem is given a collectiSnof sets, norm: |z, = +/22+---+a2,. This gives the ordinary
with associated costs, defined over a domain of weightggstance from the origin to the point a consequence of the
elements, and a budgdt; find a subset ofS’ C S such pythagorean theorem.

that the total cost of sets if’ does not exceed, and the

total weight of elements covered by is maximized. The IV. OPTIMIZATION PROBLEM

generalized maximum coverage problem is an extension of thdn this section, we first formulate the objective problenoint
former one. It has important applications in wireless OFDMAnN optimization problem and prove its NP-hardness. Then we
scheduling. In this paper, we prove our optimization protide introduce a round-based heuristic algorithm, assuming tha
NP-hardness by reducing the weighted maximum coveratiee subproblem at each round can be solved optimally. An
problem to a finite version of our target problem. approximation ratio for this algorithm is also derived. &y,



we show that finding the optimal solution within a round is  Proof: Considering different values fag, b and y, the
also an NP-hard problem. problem above can be solved in three cases. We give the proof

o below for each case.
A. Optimization problem

As shown in Fig. 1¢; is the centerj, which has coverage » Casel —y+atb<l:
ranger. z; is the point: and d(cj,zq) is the interest distance we haveg = (y+a)—a—(y+a+b)+(a+b) =02>0.
betweenz; andc;. If z; is in ¢;’S coverage range, the reward « Case 2 —y+a+b>1,y+a <1
that point z; received is the inverse of the interest distance  if a +b<1,wehaveg=(y+a)—a—1+(a+b) =
betweenz; andc;. Otherwise, point:; cannot get any reward. y+a+b—1>0;
The problem can be presented as the equation below: if a+b>1, wehaveg = (y+a) —a—1+1=y>0.

ey m2) = wi(l — d(a,:rl,zi)) d(ej, i) < 1) . _Case 3—y+a>1

0 otherwise if a <landa+b<1,wehaveg=1—a—1+4+(a+b) =
One point can belong to different centers, but its received b=0;
reward can not exceed the maximum reward. Hence, ifa<landa+b>1 wehaveg=1-a-1+1=
1—a>0;
k : -
gle)) = S w(ey, ). ) |fa'>1,wehaveg:1—1—14'r1:020;
() ; (€5, 23) By combing these three cases, (8) is proved. [ ]
Fzs) = { g(x:), 9(@:) < w; 3) Lemma Ob. Let f(0) = 0; then the functionf(C), defined in
' Wi, otherwise (7), is a submodular function.

Let [],. be a function defined ds; = mazx(-,0). This tar- Proof: Consider any two subset$, B CV and A C B.
get problem can be formulated as the following maximizatiofithout loss of generality, we can assume= {a1, ..., ar}
problem: andB = {ay,...,ak,b1,...,bp } for k > 0 andk’ > 0. Then

. foranys € V ands ¢ B, we have:
mazimize Zf(a?z) (4)
= (f(AU{s}) —f(A)) ( (BU{s}) - ) ZwNRi
Then an equivalent equation can be formulated:
where:
d(cj, x;) k
{jn}ax sz min <Zmaz ( Jr 70) 71> )] VR, - mm{{l B d(s,xi)} +Z [1 B d(a_7'733i):| 71} ©)
ifj=1 1 T + = T I
Our target problem can be formulated as the following k d(a
s N R aj, %)
maximization optimization: problem min {Z {1 , ] 71}
3=1 +
C 6 ;
where V is an infinite set of indices that point to the real " =1 " +
vectors inR™ space, and” is a subset ofV. For simplicity, K d(by, )
from now on we will directly viewV as an infinite set of + [1 - %} 1
real vectors inR™ space, and represe@t as a subset of real J=1 +
vectors inR™: C' = {cy,...,cx}. The objective function in k d(a;,z: k' d(b;, :
(6) is a function ofC, expressed as: + mind Y {1 i } +>° { 2 } 1
Jj=1 + Jj=1 +
u d(cj, ;)
Zuu min¢ Y [1- =222 1 (7)  According to Lemma 0ay R; > 0. Therefore,f(A U {s}) —
T . ;
=1 + f(A) > f(BU{s})—f(B), and functionf (C') is a submodular
Theorem 0.The target optimization problem (6) is an NP-hardunction [22]. [ ]
problem. It is well known that maximizing a submodular function

Proof: It is well known that maximizing a submodularsubject to a size constraint is NP-hard [22]. Thus our target
function subject to a size constraint is NP-hard [22]. Belev maximization problem is an NP-hard problem.
will show that this objective function is a submodular fuont

by proving two lemmas. m B. Round-based heuristic algorithm
Lemma Oa. Given real numbers > 0, b > 0, andy > 0, we Because this is an NP-hard optimization problem, we intro-
have: duce a round-based heuristic algorithm. Therekareunds
) ) is same as the number of centers), in each round the reward
g = min{y+a,1} —min{a, 1} (8) value can be optimized. The round-based heuristic algurith

— min{y+a+b,1} + min{a+b,1} > 0. is described in Algorithm 1.



Algorithm 1 Round-based Heuristic Algorithm

Lletyl =1fori=1...n
2: forj_ltok:do

V. GREEDY HEURISTIC ALGORITHM

Since the problem, as we discussed in the previous sec-
tion, is NP-hard, here we will introduce three local greedy

. ‘ . . . n . j
3 {gl( 7); CJI’EZ“"' i0<_ maximizing >>;_, wiz} by algorithms to solve the problem. The idea is to use the
solving quat|on (10) . greedy approach at each point locally when seeking an optima
4 updatey’ =y — 27 fori=1...n . s : :
5: endpfor Yi =Y — =0 o solution. To simplify the discussion, we use 2-D and 2-norm

to illustrate. “The scope of a content” is represented by 2-
disk.

We assume that there anenumber of points in the whole

In Algorithm 1, the optimization problem involved in thepetwork {#1,22,...,x,}, and each point's maximum reward
jth round is as follows: : :

{wy,ws, ...,w, }. We need to findc number of disks to cover
d(cj, i) . them. The radius of the disks is predefined-a®ur objective
9(j) = max; sz min [ ki } y!
+

i

is to find the “best” disks which can get the largest reward as
we discussed in the previous section.

T

= max, . Z:““J 10 A Local greedy algorithm

st Hd<y Vi=1,....n The approximation ratio we obtained in Theorem 1 is for the
d(es, @) . round-based heuristic algorithm; Equation (10) is stillN#R-
< {1 - 7} Vi=1,...,n  hard problem. Here we solve a local greedy algorithm instead
+

T
which picks the point that leads to the largest reward as the

The optimization problem Equation (10) is equivalent 0 thgsnter in each round. This algorithm is shown in Algorithm
following optimization problem.

S,

VA

2.
; mj"xl Zwisizf (11) Algorithm 2 Local Greedy Algorithm
CjrZY ey Zin S . Sn
d(c x) 2:forj:1tokdo 4
Zf <1- JT’,WZL-..,H 3 {9(j), ¢, 2], ..., 20} « maximizing 31" w;z] by
0<s;<1,Vi=1,...,n solving Equatlon (13).
, , _ 4. updatey/t'=y! — 2 fori=1...n
It is straightforward to show that for any feasible so-. onq for
lution (¢, z1,...,2,) of (10), we can simply construct;
_tl)_)r/] setting it to 1 if1 > d(c’.zi)/r e;nd 'tt())l 0 Olth?rWIS];e' In Algorithm 2, the optimization problem involved in the
en(c,z1,...,%n,81,...,5,) IS one feasible solution for jth round is as follows:
(11) with the same object|ve value. On the other hand, for
any optimal solution(c*, z{, ..., 2, s1,...,s7) of (11), it g(j) =max, eqay,..ony S0, wi mm{[l_ M} 7%3_'}
is straightforward to see thdt*, z7,...,z%) is one feasible s
solution for (10) with the same objective value, and therefo SMAX, oo yad s, 2aimt WiF (13)
is also an optimal solution of (10). st d<ylVi=1,....n
The optimization problem (11) is a quadratic programming. < [1 _ d(ey, n] Ni=1,....n
Rewrite its objective in a quadratic formQa ", wherea = t "
[21,...,20,81,...,8n,¢;] and: In each round of Algorithm 2, all of the points are can-

didates for the center of the disk. The point that gives the

maximumcoverage rewardwhich includes all of the rewards

contributed by the points covered by this disk, will be stddc

as the center of the disk. If there are a number of points, kvhic

for w=[wy, ..., w,]. It is easy to see thap has both positive have the same maximum coverage reward, our selection will

and negative eigenvalues. Thus Equation (11) is NP-hdrd based on the index of the points (index refers to the ID of

according to [23], and Equation (10) is NP-hard as wethe point).

accordingly. The approximation ratio of this local greedy algorithm is
In the following, we present a theorem for the approximagiven in Theorem 2.

tion ratio of the round-based heuristic algorithm.

zeros(n,n) 0.5diag(w) zeros(n,1)
Q = | 0.5diag(w) zeros(n,n) zeros(n,1) (12)
zeros(l,n) zeros(l,n) zeros(l,1)

Theorem 2. Algorithm 2 (local greedy) achieves an approx-
Theorem 1. Algorithm 1 (round-based heuristic) achieves aimation ratio of 1 — (1 — 1/n)*, wherek is the number of
approximation ratio ofl — (1 —1/k)*, wherek is the number selected centers and is the number of pointsn > k is

of selected centers. assumed by default.

We leave the proof of this theorem to the Appendix. We leave the proof of this theorem to the Appendix.



1 uf 1 number of points, which have the same maximum single-point
1 el 1 reward, our selection will be based on the index of the nodes.
——approx. 1 | = approx. | Theorem 3. The complexity of Algorithm 3 (simple local
== e '°
| greedy) isO(kn).

Approximation ratio
Approximation ratio

_— 02|

", — R R Proof: In each round, there are up tosteps to get the
‘ Namber of centore ) ' Namber of centers ‘  coverage reward by the selected center. Hence, the coryplexi
(a) 10-node (b) 40-node of this algorithm isO(kn). [

It is easy to show that the approximation ratio in Theorem

Fig.‘ 2. Comparison of approximation ratio in 10-node and 46eno 3 still holds for the simple local greedy algorithm.
environments.

Complex local greedy algorithm the complex local greedy
algorithm is described in Algorithm 4:
In each round, it takes up tosteps to select the center point
in the approach, and there are upitsteps to get the Coveragen|gorithm 4 Complex Local Greedy Algorithm
reward by each candidate center. Hence, the complexityi®f th
algorithm isO(kn?).

letyl =1fori=1...n.

2. for j=1tok do

B. Alternative local greedy algorithms 3 fori=1tondo

4: Initially 2} < ;.

5: updatez! ™= new-center(z}), for { =1...(n — 1).

6: endfor A

7. {9(),cj, 21, ... 20} + maximizing > w;z! by
solving Equation (15).

updatey! " '=y/ — 27, fori=1...n.

2

In Fig. 2, approx. 1 is the approximation rafie-(1—1/k)*
from Theorem 1 using Algorithm 1, and approx. 2 in the
figures is the approximation ratia — (1 — 1/n)F from
Theorem 2 using Algorithm 2, wherg is the number of
centers and: is the number of points. We compare these two
approximation ratios in 10-node and 40-node environment$:
We can see that approx. 1 is much larger than approx. 2. In thé €nd for
following, we propose the other two algorithms: one reduces
the asymptotic complexity (simple local greedy algoritranyl In Algorithm 4, the optimization problem involved in the
another one increases the approximation ratio (complex logth round is as follows:
greedy algorithm).

. . . . A n . _ dlej,mi) J

Simple local greedy algorithm picks the largest single 9(7) = MaXe,efop..apy 2oisy Wi mm{[l v L’yi}

reward point as the center in each round, which is described — max C S wd (15)
i : . - c;e{zl,..., zn},29,., 23 i=1 1%
in Algorithm 3: , ;
s.t. zl <yl,Vi=1,...,n
Algorithm 3 Simple Local Greedy Algorithm 2 < [1 - @] Vi=1,...,n
+
1letyl =1fori=1...n.
2: for j=1tok do ‘ We use a 2-D disk to illustrate the new-centef) in a 2-D
3 ¢j xy fori* = arg max; wiyl . ‘ and 2-norm system:
4 {9(G), =, 2} « maximizing 35, wizf by SOV- 9 g with the diskD centered at am!.
_ mngqu?H?f gl4)'j for i 2) Consider the remaining heaviest pcy‘r(t.e.,maijzé).
5: Lépf atey; " =y; —z;, fori=1...n. 3) If j is outsideD, return the center ob and stop.
6: end for 4) Otherwise, define the center for the new digk by
. o . . including 5 in D. This center is the smallest disk that
In Algorithm 3, the optimization problem involved in the covers all points in D plus point.
jth round is as follows: 5) If the coverage reward dP’ is larger than the coverage
N " LA Al ) ; reward of D, then return the center ab’; otherwise,
9(7) = z_;wi S B T R return the center op.

n , n Algorithm 4, ¢(j) is the coverage reward. It is so
= maxgo g Z“’izf 14) presented to keep all of the algorithms in a uniform way.
PR The new center(z!) in 1-norm can be easily calculated
through projections on different dimensions. Note that the
[1 - M] Ni=1,...,n major difference here is that the position of a center can be
" + anywhere in the complex local greedy algorithm.
In each round, we will pick the point with the maximum The complexity for this greedy heuristic algorithm is de-
single-point rewardas the center of the disk. If there are &cribed in Theorem 4:

s.t. zzj

IN

y,Vi=1,...,n

J
%

IA
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Fig. 3. Greedy algorithms: greedy 2: (a) - (d); greedy 3: (&)); ¢greedy 4: (i) - (I) (different symbols of the points meanfefiént weights: 5:x; 4: [J; 3:
o; 2. +; 1: O. % is the centers).

[ Coverage reward] 1 \ 2 \ 3 \ 4 [ Total | . . . . .
Greedy 2 143145 112069 9778 | 92406 | 446301 can be determined through a projection on the dimension. The
Greedy 3 11.2969| 9.7395 | 8.4636 | 8.3435 | 37.8435| min and max values are determined. The center position along
Greedy 4 20.3867 ] 19.1588] 13.5481| 10.4635] 63.5571]  thjs dimension i§min + max)/2. Therefore, its complexity is
TABLE | O(kmn?). L

COMPARISON OF THREE GREEDY HEURISTIC ALGORITHMS
The approximation ratio for the complex local greedy algo-
rithm is still an open problem.

Theorem 4. The complexity of Algorithm 4 (complex local
greedy) isO(kn?) for 2-norm in a 2-D space. The complexityc. p-norm in them-D space
is O(kmn3) for 1-norm in them-D space.

Proof: For 2-norm in a 2-D space, there draounds in Previously, we used 2-norm and a 2-D space to explain our
the outer ioop Also, each point (af) p,erforms D), (2) and algorithms. The disk and its radius we mentioned are based on
(3), that we di.scuss,ed above, of the following: ’ 2-norm to calculate the interest distance between two point

Suppose the size ab is i in the current round. (2) takes'" @ 2-D space.
(n—1) steps. (3) consumes + 1) steps (to find the smallest In the 2-D space, if we use the 1-norm to calculate the
disk to coverD and the newly selected point). Up torounds interest distance, we can use a square to cover the points
of (2) and (3) have a total of? Steps_ Therefore, the Overa”instead of the disk, and the “radius” would then be the SdSlare
complexity isO(kn?). side length.

For 1-norm in them-D space, in each round, up o’ In the 3-D space, in a 1-norm system, we use a cube to
steps are needed as all remain the same except (3), whicker the points, while in a 2-norm system, we use a ball to
consumesn - (i+1). Along each dimension, the the boundargover the points.
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VI. SIMULATION solution. In the 3-D space comparison, we just compare these

. . three greedy algorithms’ gained rewards.
In this section, we compare the performance of our greedy g y a9 g

algorithms. The metric we used is the approximation rati@. Simulation results
This is the ratio of our greedy algorithms’ reward and the

. In this section, we will discuss the simulation results gsin
exhaustive reward.

the greedy algorithms we mentioned in the previous sections

1) Example: First, we give an example to illustrate how
these three local greedy algorithms work.

We randomly put the nodes into(d x 4) 2-D space and a In Figs. 3, we implement our three local greedy algorithms
(4 x 4 x 4) 3-D space. In a 2-D space, we have 10-node aigl a (4 x 4) 2-D space with 40 nodes based on 2-norm
40-node environments. In a 3-D space, we have 40-node doflinterest distance calculation. Table | shows the cayera
160-node environments. reward gain in each round using these algorithms. It is clear

The weight of each node is an integer. We also have twisat the third one is much better than other two in each round.
schemes: one is that the weight of each node is the same2) Results in a 2-D space using 2-norin:a 2-D space, we
which is 1; another is that the weight of each node is differefirst use 2-norm to calculate the interest distance between t
which is a random integer between 1 and 5. points. We compare the approximation ratio among these thre

In our simulation, the calculation of the interest distancalgorithms with the exhaustive solution, as shown in Figs. 4
is based on 1-norm and 2-norm. We compare the greeayd 5.
algorithms in different number of centers (2, 4) and difféere From Figs. 4 and 5, we can see that our proposed three
radius of the centers (1, 1.5, 2). local greedy algorithms’ approximation ratios are all &rg

We denote that the original local greedy algorithm (Algothan approx. 2. This validates Theorem 2. Greedy 3 is better
rithm 2) is called greedy 2, the simple local greedy algoniththan the other two, and its approximation ratios are above
(Algorithm 3) is called greedy 3, and the complex local gseedapprox. 1 most times in different conditions.
algorithm (Algorithm 4) is called greedy 4. Overall, in a 2-D space for 2-norm, we find that with greedy

In the 2-D space comparison, ratios 2, 3, and 4 preseéhtthe approximation ratio is abo8t.22% which is the best
the approximation ratio among these three greedy algosithimut of all three of the greedy algorithms. Greedy 1's the
(Algorithms 2, 3, and 4) with the exhaustive optimal solatio approximation ratio is aboui8.87% and approximation ratio
respectively. We also compare these three ratios with appréor greedy 2 is abou$5.97%.

1 from Theorem 1 and approx. 2 from Theorem 2. Note that3) Results in a 2-D space using 1-norrm a 2-D space,
approx. 2 is the worst case for Algorithm 2. Therefore it ddouwe use 1-norm to calculate the interest distance between two
correspond to the smallest number (in ratio). Approx. 1 & timodes. We compare the approximation ratio among these three
worst case for an iterative approach with the optimal localgorithms with the exhaustive solution.

A. Simulation methods and setting
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Fig. 6. Comparison in 1-norm in a 2-D space using differentgivis.
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Fig. 7. Comparison in 1-norm in a 2-D space using the same weight

From Figs. 6 and 7, we find that with greedy 3, th@roblem. Three greedy algorithms have been proposed te solv
approximation ratio is abowi2.76% which is the best out of the optimal problem. The greedy algorithms can be imple-
all three of the greedy algorithms. Greedy 1's approximmtianented in then-D space using-norm to calculate the interest
ratio is about68.77% and the approximation ratio for greedydistance. We analyzed the approximation ratio of the greedy
2 is about57%. algorithms and its complexity. We then turned to studying th

4) Results in a 3-D space using 1-norrm a 3-D space, performance of these three local greedy algorithms in 2-® an
we use 1-norm to calculate the interest distance betwe®dD space with 1-norm and 2-norm. The simulation results
two nodes. We compare the total reward that these threave shown that our proposed algorithms perform well. To the
greedy algorithms gain with same weight and different weighest of our knowledge, this is the first study on the optimal
schemes, as shown in Figs. 8 and 9. content distribution problem in wireless networks.

We find using greedy 3 will get the highest reward. Using
greedy 1 gets aboutl.04% of the reward that greedy 3 gets, ACKNOWLEDGMENTS
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Section IV and Theorem 2 in Section V.
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Thus (b)g(5) > i(fopt ZZ L 1 g(¢—1)) is proved. ]

Now let f(j) = >>7_, g(j)- Thenf(k) is the reward value,
i.e. the sum of objective values in all rounds, returned
by the round-based heuristic algorithm above. Accordmg
Lemma 1, we have:

J) = 9(1) > o a9)
1G) = FG-D+16) - FG - )
fG =1 +490) _
> S =1+ o = Y g(C— 1)
=1
= JG=D+ LU = FG = 1)
= (= DIG =D+ o,
forj=2,... k. (19)

Combining the base case inequation (18) and the recursive

inequation (24), we can get:

Fk) = (1= (L= 1/k)) fopr = (1 = 1/€) fopt.

Therefore, the approximation ratio of the round-basedikgar
algorithm is(1 — (1 —1/k)*), and it is bounded byl —1/e).

(20)

Proof of Theorem 2: We will prove Theorem 2 by proving
the following Lemma.

Lemma 2. Let g(j) = > i, w;z! be the optimal objective
function value for the optimization problem (13) in thth

Thus (a)g(1) > £ f,,+ is proved.
Let the reward obtained on poihfrom the flrStj 1 rounds

of the _round -based heuristic algorithm h$ = YA,
thusy! = 1 — A" and S50 BI7" = 017 g(¢ — 1).
Let {ci,..., oy be the optlmal solutlon returned by the

optimization. Therefore
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Thus (b)g(j) > n(fopt — Sl gt —1))is proved. m

Now let f(j) = >"7_, 9(4). Thenf(k) is the reward value,
i.e. the sum of objective values in diliterations, returned by
the local greedy algorithm above. According to Lemma 2, we
have:

) = 62 o (23
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> fU-1)+ ﬁ(fopt - Zg(f -1))
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forj=2,... k. (24)

Combining the base case equation (23) and the recursive in
equation (24), we can get:

FG) = (1= (1= 1/n)7) fope- (25)

round of the local greedy algorithm. We then have the follow-hus:

ing results: (Q)g(1) > L fope; (0) 9() > 2 (fope— D921 9((—
1)), forj=2...k.

Proof: It is obvious f,,;

L w;. The proof for (a)
is straightforward. From tﬁe local
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greedy algorithm, we énavs

Fk) > (1= (1= 1/n)") fopt (26)

and the approximation ratio of the local greedy algorithm

(1= (1—1/n)").



