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Abstract—The increase in multimedia content makes providing
good quality of service in wireless networks a challenging
problem. Consider a set of users, with different content interests,
connected to the same base station. The base station can only
broadcast a limited amount of content, but wishes to satisfy
the largest number of users. We approach this problem by
considering each user as a point in a 2-D space, and each
type of broadcast content as a circle. A point that is covered
by a circle will be satisfied, and the closer the point is to the
center of the circle, the higher the satisfaction. In this paper, we
first formulate this problem as an optimal content distribution
problem and show that it is NP-hard. The optimal problem
can also be extended into anm-dimensional (m-D) space, and
distance measurements can be expressed in a generalp-norm. We
then introduce three local greedy algorithms and compare their
complexity. The approximation ratio of our greedy algorithms to
the optimization problem is also formally analyzed in this paper.
We perform extensive simulations using various conditions to
evaluate our greedy algorithms. The results demonstrate that
our solutions perform well and reflect our analytical results.

Index Terms—Approximation ratio, content distribution, local
greedy algorithm, maximum coverage, optimization.

I. I NTRODUCTION

The growth in the amount of mobile devices, such as
smartphones and tablets, coupled with the popularity of mul-
timedia content, places a significant strain on existing wire-
less networks. The field of content distribution for wireless
networks [1], [2], [3], [4] has emerged in an attempt to
address this problem. In this paper, we propose to formulate
the content distribution problem as an optimization problem
which considers the interest distance between the content and
the user’s interest.

Fig. 1 illustrates our problem setting. We assume the base
station (BS) can only broadcastk times in a given period of
time ton number of users. The BS is limited tok broadcasts
for performance reasons, wherek < n. Each user will be
happy if the information that was broadcast is close to his
interest. We seek to answer the question of choosing the
content to broadcast to make the most number of users happy.

This problem can be abstracted as follows. Suppose there
aren points in a 2-dimensional (2-D) space to be covered byk
circles of radiusr. Each pointxi has a maximum reward ofwi,
and a point will return a reward if it is covered by a circle. The
amount of reward is determined by its distance to the center
of the circle. Our objective is get the maximum reward for all
of the points. In this abstraction, each point corresponds to a
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Fig. 1. Content distribution in a sequence ofk broadcast in them-D space.

particular user’s interest. Two dimensions is considered to be
two attributes of an interest. Radius determines the boundary
of closeness between the content and matching interest. The
reward denotes happiness, but with a given bound.

In the real world, people (users here) have their own
interests. If the broadcast contents meet their interests,users
will be happy and gain some rewards. For example, one user
is interested in classic music. If the BS broadcasts light music,
this user will be happy to hear this content. Otherwise, if rock
music is broadcast, the user will not gain any rewards. The
total rewards that each user can gain is capped. The interest
distance is the difference between the broadcasting contents
and the users interests, which can be used to measure the
gained rewards. Our objective is to maximize the total rewards
gained by all of the users. We use multi-dimensional vectors
(m keywords inm-D space) to represent the contents and the
users’ interests.

In this paper, we first formulate our objective into an
optimization problem and prove its NP-hardness. Then we
propose three local greedy algorithms to solve the problem.
These algorithms can be implemented in them-D space. The
interest distance can be calculated in a generalp-norm. Here,
we only consider the 1-norm and 2-norm (physical distance
in the 2-D space) models. We also design weighted and
unweighted schemes to better reflect the relative importance
of each node in the network. An analysis of the approximation
ratio of the greedy algorithms is also given. Trace-driven
evaluations show the good performance of our local greedy
algorithms.

The major contributions of our work are as follows:



• We introduce the reward function to measure the quality
of content distribution in a content distribution network.

• We prove the optimization problem is an NP-hard prob-
lem.

• We develop three local greedy algorithms to solve the
problem and calculate the approximation ratio.

• We evaluate the algorithms in synthetic traces. The simu-
lation results show the good performance of the proposed
greedy algorithms.

The rest of the paper is organized as follows. Section II
discusses relevant previous work. Section III presents the
preliminary work, where the problem definition is given and
p-norm as interest distance is reviewed. Section IV explains
the objective function in a formal model and provides the
proof of its NP-hardness. Section V describes our designed
local greedy algorithms with the approximation ratio. Section
VI analyzes the experiment results. Section VII concludes the
paper. The detailed proof of the approximation ratio is given
in the appendix of the paper.

II. RELATED WORK

A. Content distribution

Content distribution for peer-to-peer (P2P) applicationsis
an important research problem [5], [6], [7], [8]. Content
distribution protocols allow personal computers to function
in a coordinated manner as a distributed storage medium by
contributing, searching and obtaining digital content. There is
a rich amount of literature on the design and performance anal-
ysis of content distribution algorithms in wireless networks [1],
[2], [3], [4], [9], [10], [11], [12]. These protocols mainlyrely
on flooding, not only to maintain the topology information, but
also to distribute the content availability. Our approach differs
from these works because we introduce the interest distance,
and formulate the problem to a maximum reward problem.

B. Maximum coverage

Our maximum reward content distribution problem is simi-
lar to the maximum coverage problem in [13]. This is a classic
question in computer science and computational complexity
theory. The maximum coverage problem is NP-hard, and has
been widely studied in approximation algorithms. Recent re-
search on this topic has proposed budgeted maximum coverage
[14] and generalized maximum coverage [15]. The budgeted
maximum coverage problem is given a collectionS of sets,
with associated costs, defined over a domain of weighted
elements, and a budgetL; find a subset ofS′ ⊆ S such
that the total cost of sets inS′ does not exceedL, and the
total weight of elements covered byS′ is maximized. The
generalized maximum coverage problem is an extension of the
former one. It has important applications in wireless OFDMA
scheduling. In this paper, we prove our optimization problem’s
NP-hardness by reducing the weighted maximum coverage
problem to a finite version of our target problem.

C. Smallest circle problem

In our greedy algorithms, we will use smallest circle so-
lution to find the smallest circle to cover the points in the
2-D space. The smallest circle problem was initially proposed
by the English mathematician Sylvester in 1857 [16]. The
smallest circle problem in the plane is an example of a facility
location problem, in which the location of a new facility
must be chosen to provide service to a number of customers,
minimizing the farthest distance that any customer must travel
to reach the new facility [17]. As Megiddo [18] showed, the
minimum enclosing circle can be found in linear time, and the
same linear time bound also applies to the smallest enclosing
sphere in Euclidean spaces of any constant dimension. Welzl
[19] proposed a simple randomized algorithm for the minimum
covering circle problem that runs in expectedO(n) time, based
on a linear programming algorithm of Seidel [20].

III. PRELIMINARY

A. Problem definition

Suppose there aren points in a 2-D space to be covered by
k circles of radiusr. Each pointi has a maximum reward of
wi. A point will return a reward if it is covered by a circle.
The reward can be thought of as the satisfaction of the nodes
by receiving the content. The amount of reward is based on
the distance between the point and the center of the circle. A
point i can return multiple rewards, but not exceedingwi, if
it is covered by multiple circles. Note that a larger value ofk
tends to have a higher average of satisfiability, but it will also
have less frequent service in a time-slotted content distribution
system.

B. P-norm

The interest distance between content and an interest can
be calculated in a generalp-norm. In linear algebra, functional
analysis and related areas of mathematics, a norm is a function
that assigns a strictly positive length or size to all of the vectors
in a vector space, other than the zero vector [21].

‖x‖p =

(

m
∑

i=1

|xi|
p

)1/p

.

In this paper, we will just focus on the1-norm and the
2-norm conditions. 1-norm is also called Taxicab norm or
Manhattan norm. The name relates to the distance a taxi has
to drive in a rectangular street grid to get from the origin to
the pointx: ‖x‖

1
=
∑m

i=1
|xi|. 2-norm is called Euclidean

norm: ‖x‖
2

=
√

x2
1 + · · ·+ x2

m. This gives the ordinary
distance from the origin to the pointx: a consequence of the
Pythagorean theorem.

IV. OPTIMIZATION PROBLEM

In this section, we first formulate the objective problem into
an optimization problem and prove its NP-hardness. Then we
introduce a round-based heuristic algorithm, assuming that
the subproblem at each round can be solved optimally. An
approximation ratio for this algorithm is also derived. Finally,



we show that finding the optimal solution within a round is
also an NP-hard problem.

A. Optimization problem
As shown in Fig. 1,cj is the centerj, which has coverage

ranger. xi is the pointi andd(cj , xi) is the interest distance
betweenxi andcj . If xi is in cj ’s coverage range, the reward
that pointxi received is the inverse of the interest distance
betweenxi andcj . Otherwise, pointxi cannot get any reward.
The problem can be presented as the equation below:

ψ(cj , xi) =

{

wi(1−
d(cj ,xi)

r
) d(cj , xi) ≤ r

0 otherwise
(1)

One point can belong to different centers, but its received
reward can not exceed the maximum reward. Hence,

g(ci) =
k
∑

j=1

ψ(cj , xi). (2)

f(xi) =

{

g(xi), g(xi) ≤ wi

wi, otherwise
(3)

Let [·]+ be a function defined as[·]+ = max(·, 0). This tar-
get problem can be formulated as the following maximization
problem:

maximize

n
∑

i=1

f(xi). (4)

Then an equivalent equation can be formulated:

max
{cj}

k

j=1

∑

i

wi min

(

∑

j

max

(

1−
d(cj , xi)

r
, 0

)

, 1

)

. (5)

Our target problem can be formulated as the following
maximization optimization: problem

max
C:|C|=k,C⊂V

f(C) (6)

where V is an infinite set of indices that point to the real
vectors inRm space, andC is a subset ofV. For simplicity,
from now on we will directly viewV as an infinite set of
real vectors inRm space, and representC as a subset of real
vectors inRm: C = {c1, . . . , ck}. The objective function in
(6) is a function ofC, expressed as:

f(C) =
n
∑

i=1

wi min

{

k
∑

j=1

[

1−
d(cj , xi)

r

]

+

, 1

}

(7)

Theorem 0.The target optimization problem (6) is an NP-hard
problem.

Proof: It is well known that maximizing a submodular
function subject to a size constraint is NP-hard [22]. Belowwe
will show that this objective function is a submodular function
by proving two lemmas.

Lemma 0a.Given real numbersa ≥ 0, b ≥ 0, andy ≥ 0, we
have:

g = min{y + a, 1} −min{a, 1} (8)

− min{y + a+ b, 1}+min{a+ b, 1} ≥ 0.

Proof: Considering different values fora, b and y, the
problem above can be solved in three cases. We give the proof
below for each case.

• Case 1 —y + a+ b < 1:
we haveg = (y+a)−a− (y+a+ b)+(a+ b) = 0 ≥ 0.

• Case 2 —y + a+ b ≥ 1, y + a ≤ 1:
if a+ b ≤ 1, we haveg = (y + a)− a− 1 + (a+ b) =
y + a+ b− 1 ≥ 0;
if a+ b > 1, we haveg = (y + a)− a− 1 + 1 = y ≥ 0.

• Case 3 —y + a > 1:
if a ≤ 1 anda+b ≤ 1, we haveg = 1−a−1+(a+b) =
b ≥ 0;
if a ≤ 1 anda + b > 1, we haveg = 1 − a − 1 + 1 =
1− a ≥ 0;
if a > 1, we haveg = 1− 1− 1 + 1 = 0 ≥ 0;

By combing these three cases, (8) is proved.

Lemma 0b. Let f(∅) = 0; then the functionf(C), defined in
(7), is a submodular function.

Proof: Consider any two subsetsA,B ⊆ V andA ⊂ B.
Without loss of generality, we can assumeA = {a1, . . . , ak}
andB = {a1, . . . , ak, b1, . . . , bk′} for k ≥ 0 andk′ > 0. Then
for any s ∈ V ands /∈ B, we have:

(

f(A ∪ {s})− f(A)
)

−
(

f(B ∪ {s})− f(B)
)

=

n
∑

i=1

wi∇Ri

where:

∇Ri = min

{

[

1−
d(s, xi)

r

]

+

+
k
∑

j=1

[

1−
d(aj , xi)

r

]

+

, 1

}

(9)

− min

{

k
∑

j=1

[

1−
d(aj , xi)

r

]

+

, 1

}

− min

{

[

1−
d(s, xi)

r

]

+

+

k
∑

j=1

[

1−
d(aj , xi)

r

]

+

+
k′

∑

j=1

[

1−
d(bj , xi)

r

]

+

, 1







+ min







k
∑

j=1

[

1−
d(aj , xi)

r

]

+

+

k′

∑

j=1

[

1−
d(bj , xi)

r

]

+

, 1







According to Lemma 0a,∇Ri ≥ 0. Therefore,f(A ∪ {s})−
f(A) ≥ f(B∪{s})−f(B), and functionf(C) is a submodular
function [22].

It is well known that maximizing a submodular function
subject to a size constraint is NP-hard [22]. Thus our target
maximization problem is an NP-hard problem.

B. Round-based heuristic algorithm

Because this is an NP-hard optimization problem, we intro-
duce a round-based heuristic algorithm. There arek rounds (k
is same as the number of centers), in each round the reward
value can be optimized. The round-based heuristic algorithm
is described in Algorithm 1.



Algorithm 1 Round-based Heuristic Algorithm

1: let y1i = 1 for i = 1 . . . n.
2: for j = 1 to k do
3: {g(j), cj , z

j
1, . . . , z

j
n} ← maximizing

∑n
i=1

wiz
j
i by

solving Equation (10).
4: updateyj+1

i =yji − zji , for i = 1 . . . n.
5: end for

In Algorithm 1, the optimization problem involved in the
jth round is as follows:

g(j) = maxcj

n
∑

i=1

wi min

{

[

1−
d(cj , xi)

r

]

+

, y
j
i

}

= max
cj ,z

j
1
,...,z

j
n

n
∑

i=1

wiz
j
i (10)

s.t. z
j
i ≤ y

j
i , ∀i = 1, . . . , n

z
j
i ≤

[

1−
d(cj , xi)

r

]

+

, ∀i = 1, . . . , n

The optimization problem Equation (10) is equivalent to the
following optimization problem.

max
cj ,z

j
1
,...,z

j
n,s1,...,sn

n
∑

i=1

wisiz
j
i (11)

s.t. z
j
i ≤ y

j
i , ∀i = 1, . . . , n

z
j
i ≤ 1−

d(cj , xi)

r
, ∀i = 1, . . . , n

0 ≤ si ≤ 1, ∀i = 1, . . . , n

It is straightforward to show that for any feasible so-
lution (c, z1, . . . , zn) of (10), we can simply constructsi
by setting it to 1 if 1 > d(c, xi)/r and to 0 otherwise.
Then (c, z1, . . . , zn, s1, . . . , sn) is one feasible solution for
(11) with the same objective value. On the other hand, for
any optimal solution(c∗, z∗1 , . . . , z

∗
n, s

∗
1, . . . , s

∗
n) of (11), it

is straightforward to see that(c∗, z∗1 , . . . , z
∗
n) is one feasible

solution for (10) with the same objective value, and therefore
is also an optimal solution of (10).

The optimization problem (11) is a quadratic programming.
Rewrite its objective in a quadratic formαQα⊤, whereα =
[zj1, . . . , z

j
n, s1, . . . , sn, cj ] and:

Q =





zeros(n, n) 0.5diag(w) zeros(n, 1)
0.5diag(w) zeros(n, n) zeros(n, 1)
zeros(1, n) zeros(1, n) zeros(1, 1)



 (12)

for w=[w1, . . . , wn]. It is easy to see thatQ has both positive
and negative eigenvalues. Thus Equation (11) is NP-hard
according to [23], and Equation (10) is NP-hard as well
accordingly.

In the following, we present a theorem for the approxima-
tion ratio of the round-based heuristic algorithm.

Theorem 1. Algorithm 1 (round-based heuristic) achieves an
approximation ratio of1− (1− 1/k)k, wherek is the number
of selected centers.

We leave the proof of this theorem to the Appendix.

V. GREEDY HEURISTIC ALGORITHM

Since the problem, as we discussed in the previous sec-
tion, is NP-hard, here we will introduce three local greedy
algorithms to solve the problem. The idea is to use the
greedy approach at each point locally when seeking an optimal
solution. To simplify the discussion, we use 2-D and 2-norm
to illustrate. “The scope of a content” is represented by a 2-D
disk.

We assume that there aren number of points in the whole
network {x1, x2, ..., xn}, and each point’s maximum reward
{w1, w2, ..., wn}. We need to findk number of disks to cover
them. The radius of the disks is predefined asr. Our objective
is to find the “best” disks which can get the largest reward as
we discussed in the previous section.

A. Local greedy algorithm

The approximation ratio we obtained in Theorem 1 is for the
round-based heuristic algorithm; Equation (10) is still anNP-
hard problem. Here we solve a local greedy algorithm instead,
which picks the point that leads to the largest reward as the
center in each round. This algorithm is shown in Algorithm
2.

Algorithm 2 Local Greedy Algorithm

1: let y1i = 1 for i = 1 . . . n.
2: for j = 1 to k do
3: {g(j), cj , z

j
1, . . . , z

j
n} ← maximizing

∑n
i=1

wiz
j
i by

solving Equation (13).
4: updateyj+1

i =yji − zji , for i = 1 . . . n.
5: end for

In Algorithm 2, the optimization problem involved in the
jth round is as follows:

g(j) = maxcj∈{x1,...,xn}

∑n

i=1 wi min

{

[

1−
d(cj ,xi)

r

]

+
, y

j
i

}

= max
cj∈{x1,...,xn},z

j
1
,...,z

j
n

∑n

i=1 wiz
j
i (13)

s.t. z
j
i ≤ y

j
i , ∀i = 1, . . . , n

z
j
i ≤

[

1−
d(cj ,xi)

r

]

+
, ∀i = 1, . . . , n

In each round of Algorithm 2, all of the points are can-
didates for the center of the disk. The point that gives the
maximumcoverage reward, which includes all of the rewards
contributed by the points covered by this disk, will be selected
as the center of the disk. If there are a number of points, which
have the same maximum coverage reward, our selection will
be based on the index of the points (index refers to the ID of
the point).

The approximation ratio of this local greedy algorithm is
given in Theorem 2.

Theorem 2. Algorithm 2 (local greedy) achieves an approx-
imation ratio of 1 − (1 − 1/n)k, wherek is the number of
selected centers andn is the number of points.n > k is
assumed by default.

We leave the proof of this theorem to the Appendix.
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Fig. 2. Comparison of approximation ratio in 10-node and 40-node
environments.

In each round, it takes up ton steps to select the center point
in the approach, and there are up ton steps to get the coverage
reward by each candidate center. Hence, the complexity of this
algorithm isO(kn2).

B. Alternative local greedy algorithms

In Fig. 2, approx. 1 is the approximation ratio1−(1−1/k)k

from Theorem 1 using Algorithm 1, and approx. 2 in the
figures is the approximation ratio1 − (1 − 1/n)k from
Theorem 2 using Algorithm 2, wherek is the number of
centers andn is the number of points. We compare these two
approximation ratios in 10-node and 40-node environments.
We can see that approx. 1 is much larger than approx. 2. In the
following, we propose the other two algorithms: one reduces
the asymptotic complexity (simple local greedy algorithm)and
another one increases the approximation ratio (complex local
greedy algorithm).

Simple local greedy algorithm: picks the largest single
reward point as the center in each round, which is described
in Algorithm 3:

Algorithm 3 Simple Local Greedy Algorithm

1: let y1i = 1 for i = 1 . . . n.
2: for j = 1 to k do
3: cj ← xi∗ for i∗ = argmaxi wiy

j
i .

4: {g(j), zj1, . . . , z
j
n} ← maximizing

∑n
i=1

wiz
j
i by solv-

ing Equation (14).
5: updateyj+1

i =yji − zji , for i = 1 . . . n.
6: end for

In Algorithm 3, the optimization problem involved in the
jth round is as follows:

g(j) =
n
∑

i=1

wi min

{

[

1−
d(cj , xi)

r

]

+

, y
j
i

}

= max
z
j
1
,...,z

j
n

n
∑

i=1

wiz
j
i (14)

s.t. z
j
i ≤ y

j
i , ∀i = 1, . . . , n

z
j
i ≤

[

1−
d(cj , xi)

r

]

+

, ∀i = 1, . . . , n

In each round, we will pick the point with the maximum
single-point rewardas the center of the disk. If there are a

number of points, which have the same maximum single-point
reward, our selection will be based on the index of the nodes.

Theorem 3. The complexity of Algorithm 3 (simple local
greedy) isO(kn).

Proof: In each round, there are up ton steps to get the
coverage reward by the selected center. Hence, the complexity
of this algorithm isO(kn).

It is easy to show that the approximation ratio in Theorem
3 still holds for the simple local greedy algorithm.

Complex local greedy algorithm: the complex local greedy
algorithm is described in Algorithm 4:

Algorithm 4 Complex Local Greedy Algorithm

1: let y1i = 1 for i = 1 . . . n.
2: for j = 1 to k do
3: for i = 1 to n do
4: Initially x1

i ← xi.
5: updatexl+1

i = new-center(xl
i), for l = 1 . . . (n− 1).

6: end for
7: {g(j), cj , z

j
1, . . . , z

j
n} ← maximizing

∑n
i=1

wiz
j
i by

solving Equation (15).
8: updateyj+1

i =yji − zji , for i = 1 . . . n.
9: end for

In Algorithm 4, the optimization problem involved in the
jth round is as follows:

g(j) = maxcj∈{xn
1
,...,xn

n}

∑n

i=1 wi min

{

[

1−
d(cj ,xi)

r

]

+
, y

j
i

}

= max
cj∈{xn

1
,...,xn

n},z
j
1
,...,z

j
n

∑n

i=1 wiz
j
i (15)

s.t. z
j
i ≤ y

j
i , ∀i = 1, . . . , n

z
j
i ≤

[

1−
d(cj ,xi)

r

]

+
, ∀i = 1, . . . , n

We use a 2-D disk to illustrate the new-center(xl
i) in a 2-D

and 2-norm system:

1) Start with the diskD centered at anxl
i.

2) Consider the remaining heaviest pointj (i.e.,maxwjz
l
j).

3) If j is outsideD, return the center ofD and stop.
4) Otherwise, define the center for the new diskD′ by

including j in D. This center is the smallest disk that
covers all points in D plus pointj.

5) If the coverage reward ofD′ is larger than the coverage
reward ofD, then return the center ofD′; otherwise,
return the center ofD.

In Algorithm 4, g(j) is the coverage reward. It is so
presented to keep all of the algorithms in a uniform way.
The new center(xl

i) in 1-norm can be easily calculated
through projections on different dimensions. Note that the
major difference here is that the position of a center can be
anywhere in the complex local greedy algorithm.

The complexity for this greedy heuristic algorithm is de-
scribed in Theorem 4:
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Fig. 3. Greedy algorithms: greedy 2: (a) - (d); greedy 3: (e) - (h); greedy 4: (i) - (l) (different symbols of the points mean different weights: 5:∗; 4: �; 3:
⋄; 2: +; 1: ©. ⋆ is the centers).

Coverage reward 1 2 3 4 Total

Greedy 2 14.3145 11.2969 9.778 9.2406 44.6301
Greedy 3 11.2969 9.7395 8.4636 8.3435 37.8435
Greedy 4 20.3867 19.1588 13.5481 10.4635 63.5571

TABLE I
COMPARISON OF THREE GREEDY HEURISTIC ALGORITHMS.

Theorem 4. The complexity of Algorithm 4 (complex local
greedy) isO(kn3) for 2-norm in a 2-D space. The complexity
is O(kmn3) for 1-norm in them-D space.

Proof: For 2-norm in a 2-D space, there arek rounds in
the outer loop. Also, each point (ofn) performs (1), (2) and
(3), that we discussed above, of the following:

Suppose the size ofD is i in the current round. (2) takes
(n− i) steps. (3) consumes(i+ 1) steps (to find the smallest
disk to coverD and the newly selected point). Up ton rounds
of (2) and (3) have a total ofn2 steps. Therefore, the overall
complexity isO(kn3).

For 1-norm in them-D space, in each round, up ton2

steps are needed as all remain the same except (3), which
consumesm ·(i+1). Along each dimension, the the boundary

can be determined through a projection on the dimension. The
min and max values are determined. The center position along
this dimension is(min+max)/2. Therefore, its complexity is
O(kmn3).

The approximation ratio for the complex local greedy algo-
rithm is still an open problem.

C. p-norm in them-D space

Previously, we used 2-norm and a 2-D space to explain our
algorithms. The disk and its radius we mentioned are based on
2-norm to calculate the interest distance between two points
in a 2-D space.

In the 2-D space, if we use the 1-norm to calculate the
interest distance, we can use a square to cover the points
instead of the disk, and the “radius” would then be the square’s
side length.

In the 3-D space, in a 1-norm system, we use a cube to
cover the points, while in a 2-norm system, we use a ball to
cover the points.
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Fig. 4. Comparison in 2-norm in a 2-D space using different weights.
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Fig. 5. Comparison in 2-norm in a 2-D space using the same weight.

VI. SIMULATION

In this section, we compare the performance of our greedy
algorithms. The metric we used is the approximation ratio.
This is the ratio of our greedy algorithms’ reward and the
exhaustive reward.

A. Simulation methods and setting

We randomly put the nodes into a(4× 4) 2-D space and a
(4× 4× 4) 3-D space. In a 2-D space, we have 10-node and
40-node environments. In a 3-D space, we have 40-node and
160-node environments.

The weight of each node is an integer. We also have two
schemes: one is that the weight of each node is the same,
which is 1; another is that the weight of each node is different,
which is a random integer between 1 and 5.

In our simulation, the calculation of the interest distance
is based on 1-norm and 2-norm. We compare the greedy
algorithms in different number of centers (2, 4) and different
radius of the centers (1, 1.5, 2).

We denote that the original local greedy algorithm (Algo-
rithm 2) is called greedy 2, the simple local greedy algorithm
(Algorithm 3) is called greedy 3, and the complex local greedy
algorithm (Algorithm 4) is called greedy 4.

In the 2-D space comparison, ratios 2, 3, and 4 present
the approximation ratio among these three greedy algorithms
(Algorithms 2, 3, and 4) with the exhaustive optimal solution,
respectively. We also compare these three ratios with approx.
1 from Theorem 1 and approx. 2 from Theorem 2. Note that
approx. 2 is the worst case for Algorithm 2. Therefore it should
correspond to the smallest number (in ratio). Approx. 1 is the
worst case for an iterative approach with the optimal local

solution. In the 3-D space comparison, we just compare these
three greedy algorithms’ gained rewards.

B. Simulation results

In this section, we will discuss the simulation results using
the greedy algorithms we mentioned in the previous sections.

1) Example: First, we give an example to illustrate how
these three local greedy algorithms work.

In Figs. 3, we implement our three local greedy algorithms
in a (4 × 4) 2-D space with 40 nodes based on 2-norm
for interest distance calculation. Table I shows the coverage
reward gain in each round using these algorithms. It is clear
that the third one is much better than other two in each round.

2) Results in a 2-D space using 2-norm:in a 2-D space, we
first use 2-norm to calculate the interest distance between two
points. We compare the approximation ratio among these three
algorithms with the exhaustive solution, as shown in Figs. 4
and 5.

From Figs. 4 and 5, we can see that our proposed three
local greedy algorithms’ approximation ratios are all larger
than approx. 2. This validates Theorem 2. Greedy 3 is better
than the other two, and its approximation ratios are above
approx. 1 most times in different conditions.

Overall, in a 2-D space for 2-norm, we find that with greedy
3, the approximation ratio is about84.22% which is the best
out of all three of the greedy algorithms. Greedy 1’s the
approximation ratio is about68.87% and approximation ratio
for greedy 2 is about55.97%.

3) Results in a 2-D space using 1-norm:In a 2-D space,
we use 1-norm to calculate the interest distance between two
nodes. We compare the approximation ratio among these three
algorithms with the exhaustive solution.
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Fig. 6. Comparison in 1-norm in a 2-D space using different weights.
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Fig. 7. Comparison in 1-norm in a 2-D space using the same weight.

From Figs. 6 and 7, we find that with greedy 3, the
approximation ratio is about82.76% which is the best out of
all three of the greedy algorithms. Greedy 1’s approximation
ratio is about68.77% and the approximation ratio for greedy
2 is about57%.

4) Results in a 3-D space using 1-norm:in a 3-D space,
we use 1-norm to calculate the interest distance between
two nodes. We compare the total reward that these three
greedy algorithms gain with same weight and different weight
schemes, as shown in Figs. 8 and 9.

We find using greedy 3 will get the highest reward. Using
greedy 1 gets about61.04% of the reward that greedy 3 gets,
and greedy 2 gets about31.14%.

C. Summary of simulation

We use these three greedy algorithms to calculate the
approximation value for the optimization problem. In 2-D and
3-D spaces for 1-norm and 2-norm, we can see that greedy
3 gets the best results. Its approximation ratio is above80%,
which is higher than Theorem 1’s approximation ratio, which
considers that each round is optimal. Greedy 1’s approximation
ratio is larger than60%, while greedy 2’s approximation ratio
is about56% in a 2-D space and31% in a 3-D space. These
two greedy algorithms’ results also reflect the analytical results
(Theorem 2). Although our optimization problem is an NP-
hard problem, our proposed greedy 3 still gets an acceptable
approximation ratio.

VII. C ONCLUSION

In this paper, we studied the content distribution in wireless
networks. We first formulated the problem into an optimal
content distribution problem and proved it as an NP-hard

problem. Three greedy algorithms have been proposed to solve
the optimal problem. The greedy algorithms can be imple-
mented in them-D space usingp-norm to calculate the interest
distance. We analyzed the approximation ratio of the greedy
algorithms and its complexity. We then turned to studying the
performance of these three local greedy algorithms in 2-D and
3-D space with 1-norm and 2-norm. The simulation results
have shown that our proposed algorithms perform well. To the
best of our knowledge, this is the first study on the optimal
content distribution problem in wireless networks.
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APPENDIX

In the appendix, we will present the proof of Theorem 1 in
Section IV and Theorem 2 in Section V.

Proof of Theorem 1: We will prove Theorem 1 by proving
the following Lemma.

Lemma 1. Let g(j) =
∑n

i=1
wiz

j
i be the optimal objective

function value for the optimization problem (10) in thejth
round of the round-based heuristic algorithm. We then have
the following results: (a)g(1) ≥ 1

kfopt; (b) g(j) ≥ 1

k (fopt −
∑j−1

ℓ=1
g(ℓ− 1)), for j = 2 . . . k.

Proof: The proof for (a) is straightforward. From the
round-based heuristic algorithm, we can see thatkg(1) can
be obtained by:

kg(1) = k max
c1

n
∑

i=1

wi min

{

[

1−
d(c1, xi)

r

]

+

, 1

}

= max
c1,...,cj

n
∑

i=1

wi

k
∑

j=1

min

{

[

1−
d(cj , xi)

r

]

+

, 1

}

≥ max
c1,...,cj

n
∑

i=1

wi min

{

k
∑

j=1

[

1−
d(cj , xi)

r

]

+

, 1

}

= fopt (16)

Thus (a)g(1) ≥ 1

kfopt is proved.
Let the reward obtained on pointi from the firstj−1 rounds

of the round-based heuristic algorithm ishj−1

i =
∑j−1

ℓ=1
zℓi ,



thus yji = 1 − hj−1

i , and
∑n

i=1
hj−1

i =
∑j−1

ℓ=1
g(ℓ − 1).

Let {c∗1, . . . , c
∗
k} be the optimal solution returned by the

optimization. Therefore:

kg(j) = k max
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r
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− h
j−1
i

)

= fopt −

j−1
∑

ℓ=1

g(ℓ− 1) (17)

Thus (b)g(j) ≥ 1

k (fopt −
∑j−1

ℓ=1
g(ℓ− 1)) is proved.

Now let f(j) =
∑j

ℓ=1
g(j). Thenf(k) is the reward value,

i.e. the sum of objective values in allk rounds, returned
by the round-based heuristic algorithm above. According to
Lemma 1, we have:

f(1) = g(1) ≥
1

k
fopt; (18)

f(j) = f(j − 1) + [f(j)− f(j − 1)]

= f(j − 1) + g(j)

≥ f(j − 1) +
1

k
(fopt −

j−1
∑

ℓ=1

g(ℓ− 1))

= f(j − 1) +
1

k
(fopt − f(j − 1))

= (1−
1

k
)f(j − 1) +

1

k
fopt,

for j = 2, . . . , k. (19)

Combining the base case inequation (18) and the recursive
inequation (24), we can get:

f(k) ≥ (1− (1− 1/k)k)fopt ≥ (1− 1/e)fopt. (20)

Therefore, the approximation ratio of the round-based heuristic
algorithm is(1− (1−1/k)k), and it is bounded by(1−1/e).

Proof of Theorem 2: We will prove Theorem 2 by proving
the following Lemma.

Lemma 2. Let g(j) =
∑n

i=1
wiz

j
i be the optimal objective

function value for the optimization problem (13) in thejth
round of the local greedy algorithm. We then have the follow-
ing results: (a)g(1) ≥ 1

nfopt; (b) g(j) ≥ 1

n (fopt−
∑j−1

ℓ=1
g(ℓ−

1)), for j = 2 . . . k.

Proof: It is obviousfopt ≤
∑n

i=1
wi. The proof for (a)

is straightforward. From the local greedy algorithm, we have

g(1) ≥ maxi wi. Therefore:

g(1) ≥
maxi wi
∑n

i=1 wi

fopt ≥
1

n
fopt (21)

Thus (a)g(1) ≥ 1

nfopt is proved.
Let the reward obtained on pointi from the firstj−1 rounds

of the round-based heuristic algorithm ishj−1

i =
∑j−1

ℓ=1
zℓi ,

thus yji = 1 − hj−1

i , and
∑n

i=1
hj−1

i =
∑j−1

ℓ=1
g(ℓ − 1).

Let {c∗1, . . . , c
∗
k} be the optimal solution returned by the

optimization. Therefore:

g(j) = max
cj∈{x1,...,xn}

n
∑

i=1

wi min

{

[

1−
d(cj , xi)

r

]

+

, y
j
i

}

≥ max
i
wiy

j
i

≥ max
i
wi min

{

k
∑

j=1

[

1−
d(c∗j , xi)

r

]

+

, y
j
i

}

≥
1

n

n
∑

i=1

wi min

{

k
∑

j=1

[

1−
d(c∗j , xi)

r

]

+

, y
j
i

}

=
1

n

n
∑

i=1

wi min

{

k
∑

j=1

[

1−
d(c∗j , xi)

r

]

+

, 1− h
j−1
i

}

≥
1

n

n
∑

i=1

wi

(

min

{

k
∑

j=1

[

1−
d(c∗j , xi)

r

]

+

, 1

}

− h
j−1
i

)

=
1

n

(

fopt −

j−1
∑

ℓ=1

g(ℓ− 1)

)

(22)

Thus (b)g(j) ≥ 1

n (fopt −
∑j−1

ℓ=1
g(ℓ− 1)) is proved.

Now let f(j) =
∑j

ℓ=1
g(j). Thenf(k) is the reward value,

i.e. the sum of objective values in allk iterations, returned by
the local greedy algorithm above. According to Lemma 2, we
have:

f(1) = g(1) ≥
1

n
fopt; (23)

f(j) = f(j − 1) + [f(j)− f(j − 1)]

= f(j − 1) + g(j)

≥ f(j − 1) +
1

n
(fopt −

j−1
∑

ℓ=1

g(ℓ− 1))

= f(j − 1) +
1

n
(fopt − f(j − 1))

= (1−
1

n
)f(j − 1) +

1

n
fopt,

for j = 2, . . . , k. (24)

Combining the base case equation (23) and the recursive in
equation (24), we can get:

f(j) ≥ (1− (1− 1/n)j)fopt. (25)

Thus:

f(k) ≥ (1− (1− 1/n)k)fopt (26)

and the approximation ratio of the local greedy algorithm
is (1− (1− 1/n)k).


